
Programmer’s Guide to the Process Logger 9-1

Chapter 9: Programmer’s Guide to the Process

Logger

This chapter describes the Process Logger and provides some guidance for
programmers wishing to configure their external programs to create CRL
entries.

9.1 Introduction

The Process Logger (Plog) provides a way to create and store CRL entries
from programs external to CRL. This is particularly useful for programs that
monitor alarms or devices on the experiment. Plog entries are stored and
viewed in the same way as entries inserted from within the CRL application.

Plog is run as a standalone daemon process that monitors specified TCP ports
for input, interprets the input as CRL entries, and creates and logs the entries.
Information on starting the Plog daemon is provided in section 11.9 Starting
the Process Logger Daemon.

There can be multiple back-to-back messages on a single open TCP connection
and many concurrent TCP connections on any TCP port. Each experiment
must assign and make known the TCP port number(s) for remote program
connections.

9.2 Guidelines for Programmers

The Process Logger communication is full duplex. Your program needs to
send messages (the entries) to Plog and to read return messages from it. You
must write your CRL entries to one of the TCP ports (sockets) on the Plog
host, as assigned by your CRL administrator.

Input for an entry must be furnished in the form of an XML message that
identifies the entry’s various header elements and body, as shown in section
9.2.1 Entry Message Format. The header elements include operator name,
category, topic, and keyword(s), all of which are optional but recommended.
These element types are described in Chapter 1: Overview. Currently, there is

9-2 Programmer’s Guide to the Process Logger

no validation of the values of these elements against values already defined for
a particular CRL installation, so you can choose unique text strings for these
items, or not. The search facilities in CRL will allow users to search on the
operator, category, topic, and keyword(s) for your program’s entries,
regardless. Make these names descriptive!

Note that if the header element values you choose don’t match values
already defined, then you need to communicate to your fellow
experimenters exactly what values to search on in order to retrieve these
entries!

Currently, only text or plaintext messages may be included in Plog entries; no
binary data is accepted1. Text and plaintext are compared and contrasted in
section 3.3.1 Text.

9.2.1 Entry Message Format

The format of the messages Plog receives from your program must be as
shown below.

Notes:

• Use upper case for the element tags.2

• The MESSAGE TYPE (first line) must be set to TEXT or
PLAINTEXT.

• The element tags <MESSAGE>... </MESSAGE> and
<TEXT>...</TEXT> are required; all other element tags are optional.

• The logged text within <TEXT>...</TEXT> must either be
contained within a <![CDATA[...]]> construction or it must
conform to valid XML standards (e.g., <P> must be used as <P/>,

 must be
, and so on, and all tags with attributes must have
the attribute value enclosed in double quotes, e.g., <FONT
size="10">...).

• The logged text within <TEXT><![CDATA[...]]></TEXT> can
contain3:

· newlines

· carriage returns

· HTML tags (If the message type is plaintext, your browser should
treat HTML tags properly, but CRL will treat the tags as text.)

1. In the future, binary data could be added by using base64 encoding and creating an
XML tag for the encoded data.
2. <MESSAGE> and </MESSAGE> are the only element tags that are required to be
upper case.
3. The CDATA construction is not strictly necessary, however it ensures that the text will
be interpreted as a character string and will not be parsed.

Programmer’s Guide to the Process Logger 9-3

Format

<MESSAGE TYPE="plaintext">

 <OPERATOR>Name of program or responsible person

 </OPERATOR>

 <CATEGORY>Category/subcategory/sub-subcategory/...

 </CATEGORY>

 <TOPIC>Topic

 </TOPIC>

 <KEYWORD>Keyword1

 </KEYWORD>

 <KEYWORD>Keyword2

 </KEYWORD>

 <TEXT><![CDATA[The logged text goes here.]]>

 </TEXT>

</MESSAGE>

9.2.2 Return Messages from Plog

Every time Plog receives an entry, it returns a message to the sending program.
The return message is one of the following three:

<SUCCESS/> successful entry

<FAIL/> entry not saved, but no syntax error detected; may
succeed if tried in future (e.g., occurs if database
application is not currently running or filesystem not
available)

<ERROR/> message had a syntax error and will never result in a
saved entry

9.2.3 Sample Java Program Excerpt

You should configure your program to run input and output threads, as
illustrated in this annotated Java test program excerpt (text enclosed in
brackets, e.g., <text>, indicates replacement by context-sensitive data):

// Start the program:

public static void main (String[] args) {

 try {

// Define target host and TCP port (socket):

 Socket s = new Socket ("<IP_address_of_Plog_host>",<TCP_port_number>);

// Open "write" target file (set to PrintWriter here):

 PrintWriter pw = new PrintWriter (s.getOutputStream(), true);

// Start thread to read return messages from Plog, BEFORE starting write thread:

 InputStreamReader isr = new InputStreamReader (s.getInputStream ());

9-4 Programmer’s Guide to the Process Logger

// Start thread to write messages to PrintWriter; this test program accepts

// input from keyboard, writes to pw, then flushes pw. Test program does

// not enforce entry message format -- yours must!

 new ClientTester ().start();

// Thread to send to Plog

 while (true) {

 char c = (char)System.in.read();

 pw.write(c);

 pw.flush();

 }

// Thread to read return messages from Plog

public void run () {

 char[] cbuffer = new char[20]

 while (true) {

 try {

 System.out.println("ISSUE READ");

 int count = isr.read(cbuffer);

 System.out.println("READ: "+new String (cbuffer,0,count));

 } catch (Exception e) {}

 }

...

}

